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Fourier Optics Analysis of Thin Masks

Incident Field
Ai(x,y)

Transmitted Field
Ao(x,y)

Mask Transmission
T(x,y)

Assumes T(x,y) is
Independent of Ai(x,y), Independent of λλλλ, 

Independent of Polarization … ! 
[For Binary Masks T(x,y)=1/0]

Fourier Transform of A0 is 
equivalent to the far field 

radiated toward the Lyot stop.
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A convolution only for the simple T(x,y) 
behavior assumed above!
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Pupil-Plane Masks

Binary Image-Plane Mask



t

Waveguide Effects 
[Standing Waves, Phase Shift]

Interaction with Other Apertures

Edge Conditions

Full-Wave Electromagnetic Effects in 
Thick Masks

• Finite Conductivity of the Metal Layer
• Thickness of the Metal Layer [Due to Finite Conductivity] 
• Dependence of the Transmission Coefficient on the Polarization of the Incident 

Field
• Dependence of the Transmission Coefficient on the Illumination Angle of the 

Incident Field
• Interaction Between Different Regions/Periods of the Mask
• Substrate Effects



Full-Wave Analysis of Masks
• Typical dimensions for a single period of the smallest structure of interest, a Sin2 binary 

image plane mask: For F/15 (considered a minimum): Tx=150λ, Ty=15λ, and 
Thickness=0.6λ. [Large EM Problem!]

• Goals
• Estimate the smallest acceptable F# for the binary image-plane masks to function 

properly [smallest allowable feature sizes?]
• Estimate cross-polarization levels introduced by the masks
• Estimate bandwidth effects/limitations

• Two-Pronged Approach
• Pursue exact analysis using available solution techniques: GTD/UTD, FDTD, MOM, FMM, …
• Consider several types of approximate analysis

• Obtain order-of-magnitude estimates for EM effects
• Use in “Local”, approximate analysis of a real mask
• Compare various mask types against each other
• Example problems

• Canonical Problem: thick periodic gratings
• Approximate propagation through thick apertures using modal expansion 



Thick Periodic Grating

• Why a Thick Periodic Grating?
– Thick One-Dimensional Grating will Demonstrate Propagation 

Effects of Gap Size and Incident Polarization
– Periods of 30-100l (F# =30-100) Translate into a Reasonable EM 

Problem for which a Converged Result can be Obtained
– Both the Periodic and Non-Periodic Binary Masks Appear as A 

Thick Periodic Grating when Examined Locally and will Share 
many of the Grating’s EM Effects

– Grating Transmission Coefficients can be used in an Approximate 
Analysis of the Binary Mask



Relative Transmission  (0.6 lambda Thick Strip Array, Period=30 lambda)
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Canonical Example: Thick Strip Grating, 
Relative Transmission Versus Gap 

Dimension, 30λ Period

Relative Transmission  (0.6 lambda Thick Strip Array, Period=30 lambda)
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Relative Amplitude Relative Phase

Smallest Gap

1.2
>100 deg.

>10 deg.

Approximate Mask Performance Using 
Parallel Plate Transmission Coefficients in 

the Gaps

dB

Approximate Lyot Stop Fields
F/15 Contrast @ 5λ/D ≈ 60 dB

Other Polarization (not shown) ≈ 68 dB
F/30 Results ≈ 69/80 dB

F/15 Approximate Transmission Coefficients

Binary Sin2 Mask
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Approximate Propagation 
Through a Thick Aperture

t

Einc Eout

apertureEinc=∑AnEn

Eout=∑AnEne-γ
n
t
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En=Aperture Waveguide Mode
• Determine Waveguide Modes 

of the Aperture (analytic/FEM)
• Expand Incident Electric Field 

Into This Modes Set
• Ignore Magnetic Field
• Propagate/Decay Modes 

Through the Aperture
• Evaluate Field at Aperture Exit
• Estimates: Phase and 

Amplitude Throughout 
Aperture and Cross-Polarization

• Exact Solution Adds Magnetic 
Field Match and Reflected 
Modes in ApertureExample Aperture Mode

Sin2 Binary Mask



Analytic Example: Sector-Shaped 
Aperture, ρ-Directed Incident Field
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Small-Scale Example
Binary Sin2 Mask 

• Small Scale Example (F/3), 
Illustrates Full-Wave Effects

• Aperture Size 30λx3λ
• Thickness 0.6λ
• Y (Perpendicular) Polarization
• FEM Solution/Modal Expansion 

into 300 Waveguide Modes
• Visible Effects:

– High-Order Phase/Amplitude 
Ripple [OK if Rapid Enough]

– Distortion/Shorting of Field Near 
PEC Edges [Effective Area]

– Cross Polarized Field Near 
Internal Corners (not shown here)

• This Work is On-Going

Single Cell of 2-D Periodic Structure
Must Transform to Find Lyot

Stop Fields
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